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Abstract

The global role of Chapman’s hydrostatic solar wind mechanism [4] in Parker’s hydrodynamic
solar wind model [6] is investigated by using the de Laval nozzle analogy (Clauser [14], Parker
[15]) for the latter model. The action of solar gravity in Parker’s hydrodynamic solar wind model
is shown to be geometrically equivalent to a renormalization of the wind channel area, which is
described precisely by Chapman’s hydrostatic density profile [4]. So, Chapman’s hydrostatic solar
wind mechanism [4] appears to continue to be operative, on a global level (not just locally near the
coronal base), in Parker’s hydrodynamic solar wind model [6], the effects of solar gravity in Parker’s
hydrodynamic model [6] being essentially encapsulated by Chapman’s hydrostatic model [4]. This
result is shown to be robust by considering both isothermal gas and polytropic gas models for the
solar wind.

1

http://arxiv.org/abs/2501.02731v1


1 Introduction

The solar wind is a hot tenuous plasma outflowing continually from the sun, which carries off a
huge amount of angular momentum from the sun while inflicting only a negligible loss of mass
(Meyer-Vernet [1]). The bulk of the solar wind is known to emerge from the coronal holes (Sakao
et al. [2]), and to fill the heliosphere (Dialynas et al. [3]). Weak to moderate speed solar wind is
believed to be caused by coronal heating along with high thermal conduction. Chapman [4] argued
that the corona is governed by a near hydrostatic force balance condition due to the strong binding
of the corona by solar gravity, and hence gave a hydrostatic model for the static corona. Lamers
and Casinelli [5] numerically demonstrated that the corona is almost in hydrostatic equilibrium not
just at its base, but until close to the Parker sonic critical point (r = r∗), where the wind flow
speed equals the sound speed in the wind.

However, away from the sun, as Parker [6] pioneeringly pointed out, the thermal energy of the
corona greatly exceeds the gravitational binding energy, so Chapman’s [4] static corona model would
become inaccurate, and the radial coronal flow is no longer negligible. Parker [6] gave an ingenious
stationary hydrodynamic model for the solar wind, which enables the solar wind to accelerate
continuously from subsonic speeds at the coronal base to supersonic speeds away from the sun via

conversion of the thermal energy in the wind beyond the coronal base into kinetic energy of the
outward flow. Solar wind observations (Schrijver [7]) indicated that the large-scale behavior of the
solar wind, on the average, its local noisiness (Feldman et al. [8]) notwithstanding, is apparently
close to Parker’s steady solar wind solution1.

On the other hand, the continuous acceleration of the solar wind to supersonic speeds, as
described by Parker’s hydrodynamic solar wind model [6], led to the surmise of a de Laval nozzle

type mechanism (Clauser [14], Parker [15]) implicit in the latter model. The effective de Laval
nozzle associated with Parker’s hydrodynamic solar wind model was also shown (Shivamoggi [13])
to have a minimum cross-section area at the Parker sonic critical point (r = r∗), as expected.

Near the coronal base (r ≪ r∗), Parker’s steady solar wind solution [6] reduces as, expected,
to Chapman’s hydrostatic solar wind solution [4]. However, the numerical calculations of Lamers
and Casinelli [5] showed that the density profiles given by Chapman’s hydrostatic model [4] are
almost identical to those given by Parker’s hydrodynamic model [6] (corresponding to the same
temperature) in the whole subcritical region (r < r∗). The purpose of this paper is therefore to
investigate the global role of Chapman’s hydrostatic solar wind mechanism [4] in Parker’s hydrody-
namic solar wind model [6]. This is accomplished by using the de Laval nozzle analogy (Clauser [14],
Parker [15]) for Parker’s hydrodynamic solar wind model [6]. The robustness of this development is
confirmed by considering both isothermal gas and polytropic gas models (Parker [16], Holzer [17],
Shivamoggi and Pohl [18]) for the solar wind.

2 Parker’s Hydrodynamic Solar Wind Model

Consider an ideal gas radial flow constituting the solar wind emanating from a central gravitating
point mass representing the sun (Parker [6]). The flow is assumed to be steady and spherically
symmetric so that the flow variables depend only on the distance r from the sun. Consider the gas
flow to occur in a stream tube of cross-sectional area A(r) = 4πr2 under isothermal conditions.

1The Parker Solar Probe (Shivamoggi [9]) has been providing significant information on the conditions in the inner
solar corona (Fisk and Casper [10], Bowen et al. [11], and others) some of which were at variance with previous
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The equations expressing the conservation of mass and momentum balance for this gas flow are
(in usual notations),

1

ρ

dρ

dr
+

1

Vr

dVr

dr
+

1

A

dA

dr
= 0 (1)

ρVr
dVr

dr
= −

dp

dr
− ρ

GMs

r2
(2)

where G is the gravitational constant and Ms is the mass of the sun, and p and ρ are related to
each other via the isothermal gas equation of state,

p = a2ρ (3)

a being the constant speed of sound in the gas. We assume that the flow variables, as well as
their derivatives, vary continuously, so there are no shocks occurring anywhere in the region under
consideration.

Equations (1)− (3) lead to:

1

Vr

(

V 2
r

a2
− 1

)

dVr

dr
=

(

A′

A
−

2r∗
r2

)

(4)

where r∗ ≡ GMs

2a2 locates the Parker sonic critical point, where the wind flow speed equals the speed
of sound in the wind.

On noting A(r) = 4πr2, equation (4) becomes,

1

Vr

(

V 2
r

a2
− 1

)

dVr

dr
=

2

r2
(r − r∗) (5)

which indicates the acceleration of subsonic wind flows to sonic speeds for r < r∗, and the acceler-
ation of wind flows to supersonic speeds for r > r∗.

3 The de Laval Nozzle Analogy

The continuous acceleration of the solar wind, as described by Parker’s hydrodynamic solar wind
model [10], from subsonic speeds at the coronal base to supersonic speeds away from the sun led
to the surmise of a de Laval nozzle type mechanism (Clauser [14], Parker [15]) implicit in Parker’s
hydrodynamic solar wind model [6].

Indeed, if A = A(r) is the cross-sectional area of the effective de Laval nozzle associated with
Parker’s solar wind model, equation (4) leads to

1

Vr

(

V 2
r

a2
− 1

)

dVr

dr
=

(

A′

A
−

2r∗
r2

)

≡
A′

A
. (6)

belief (like the coupling of the solar wind with solar rotation (Kasper et al. [12]) which was shown (Shivamoggi [13])
to cause enhanced angular momentum loss from the sun).
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On using the boundary condition at the surface of the sun, given by r = r0,

r = r0 : A = A (7)

equation (6) gives,

A(r) = A(r)e
2r∗
r0

( r0
r
−1). (8)

(8) indicates a recipe to renormalize the actual wind channel cross-sectional A(r), incorporating
the solar gravity geometrically via a multiplicative correction to yield the effective de Laval nozzle
cross-sectional area A(r). On the other hand, equation (6) may be viewed alternatively as an ansatz

to effectively excise solar gravity out of Parker’s hydrodynamic solar wind model [10].

It may be noted that far away from the sun, (8) yields,

A(r) ≈ A(r)e−
2r∗
r0 (9)

which indicates that the effective de Laval nozzle cross-sectional area A(r) increases like the actual
wind-channel area A(r) far away from the sun, where the solar gravity becomes unimportant, as to
be expected.

Furthermore, putting A(r) = 4πr2, we have from (8),

A′(r) = 8π(r − r∗)e
2r∗
r0

( r0
r
−1) (10)

which yields,
A′(r) ⋚ 0, if r ⋚ r∗. (11)

In addition, noting from (10),

A′′(r) = 8π

[

1−
2r∗
r2

(r − r∗)

]

e
2r∗
r0

( r0
r
−1) (12)

we have,

r ≈ r∗ : A(r) = A(r∗) +
1

2
A′′(r∗)(∆r)2 = e2(1−r∗/r0)

[

r2
∗
+ 4π(∆r)2

]

(13)

where,
∆r ≡ r − r∗.

(11) and (13) both confirm that the effective de Laval nozzle exhibits a minimum cross-sectional
area at the Parker’s sonic critical point, as to be expected.

Interesting physical implications of these results ensue by noting that the hydrostatic force

balance from equation (2), on using equation (3), gives (Chapman [4]),

−a2
dρh
dr

−
GMs

r2
ρh = 0 (14)

On using the boundary condition at the surface of the sun,

r = r0 : ρ = ρ0 (15)
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equation (14) yields

ρh = ρ0e
2r∗
r0

( r0
r
−1) (16)

Using (16), (8) may be rewritten as,

A(r) = A(r)

[

ρh(r)

ρ0

]

. (17)

(17) shows that the correction factor needed to renormalize the actual wind-channel area, to
incorporate the solar gravity geometrically, is precisely the Chapman hydrostatic density profile

ρh/ρ0. So, Chapman’s hydrostatic solar wind mechanism [4] appears to continue to be operative,
on a global level, Parker’s hydrodynamic solar wind model [6], and as (17) indicates, the effects
of solar gravity in Parker’s hydrodynamic model [6] are essentially encapsulated by Chapman’s
hydrostatic model [4]. Numerical calculations (Lamers and Cassinelli [5]), indeed demonstrated
that the corona is almost in hydrostatic equilibrium not just at its base, but until close to the
Parker sonic critical point, so the density profiles associated with Chapman’s hydrostatic model [4]
and Parker’s hydrodynamic model [6] are almost identical in the whole subcritical region (r ≤ r∗).

4 Polytropic Gas Effects on the de Laval Nozzle Analogy

The solar wind has been found (Boldyrev et al. [19]) not to cool down as fast as that caused by an
adiabatic expansion. This may be traced to significant heating occurring in the corona, impairing
adiabaticity in the wind. This situation can be dealt with by using a polytropic gas model, described
by

p = Cργ (18)

where γ is the polytropic exponent, 1 < γ < 5/3, and C is an arbitrary constant (Parker [16], Holzer
[17], Shivamoggi and Pohl [18]). The polytropic exponent γ characterizes the extent to which the
solar coronal gas conditions deviate from adiabatic conditions (γ = 5/3).

The variations in the sound speed a, given by,

a2 =
dp

dρ
(19)

for a polytropic gas, on using the conservation of the total energy in the solar wind gas,

E ≡
v2r
2

+
a2

γ − 1
−

GMs

r
= const ≡

a20
γ − 1

, (20)

are described by (Shivamoggi and Pohl [18]),

a2

a20
=

1 + 4α r∗0
r

1 + αM2
(21)

where M is the Mach number of the flow,

M ≡
Vr

a
(22)
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and

r∗0 ≡
GMs

2a20
, α ≡

γ − 1

2
. (23)

On writing equation (4) as,

1

Vr

(

V 2
r

a2
− 1

)

dVr

dr
=

[

A′

A
−

2

r2

(

r∗
r∗0

)

r∗0

]

, (24)

and noting,
r∗
r∗0

=
a20
a2

(25)

and using (21), equation (24) becomes

1

Vr

(

V 2
r

a2
− 1

)

dVr

dr
=

[

A′

A
−

2r∗0
r2

{

1 + αM2

1 + 4α r∗0
r

}]

(26)

If A = A(r) is the cross-sectional area of the effective de Laval nozzle associated with Parker’s
hydrodynamic polytropic solar wind model, we have

1

Vr

(

V 2
r

a2
− 1

)

dVr

dr
=

A′

A
.

equation (26) then leads to
A′

A
=

A′

A
−

2r∗0
r2

{

1 + αM2

1 + 4α r∗0
r

}

(27)

On using the boundary condition (7), equation (27) leads to,

A(r) = A(r)e
−2r∗0

∫

r

r0

{

1+αM
2

1+4α
r
∗0
r

}

1

r2
dr
. (28)

(28) indicates, for the polytropic wind, the effective de Laval nozzle cross-sectional area A(r) ob-
tained from a renormalization of the actual wind channel cross-sectional area A(r) via a multiplica-
tive correction incorporating the solar gravity in the Parker hydrodynamic polytropic solar wind
model.

Furthermore, putting A(r) = 4πr2, we have from (28),

A′(r) = 8π

[

r − r∗0

(

1 + αM2

1 + 4α r∗0
r

)]

e
−2r∗0

∫

r

r0

(

1+αM
2

1+4α
r
∗0
r

)

1

r2
dr

(29)

(29) implies,
A′(r) ⋚ 0, if r ⋚ r∗ (30)

where,
r∗ ≡ r∗0(1− 3α). (31)

In addition, noting from (29),

A′′(r) = 8π

[

1−
r∗0
r

(

1 + αM2

1 + 4α r∗0
r

)]

e
−2r∗0

∫

r

r0

(

1+αM
2

1+4α
r
∗0
r

)

1

r2
dr
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+8π

[

r − r∗0

(

1 + αM2

1 + 4α r∗0
r

)][

−
2r∗0
r2

(

1 + αM2

1 + 4α r∗0
r

)]

e
−2r∗0

∫

r

r0

(

1+αM
2

1+4α
r
∗0
r

)

1

r2
dr

(32)

and using the result (Shivamoggi and Pohl [18]),

r = r∗ : M2 = 1,
dM2

dr
= 0

we obtain,

A′′(r∗) = 8π

(

1 + 5α

1 + α

)

e
−2r∗0

∫

r∗

r0

(

1+αM
2

1+4α
r
∗0
r

)

1

r2
dr

> 0. (34)

Thus,

r ≈ r∗ : A(r) ≈ A(r∗) +
1

2
A′′(r∗)(∆r)2 (35)

which, on using (34), confirms that the effective de Laval nozzle, for a polytropic wind, exhibits
again a minimum cross-sectional area at the Parker sonic critical point, as anticipated.

In order to further see further physical implications of the above results, note that the hydrostatic
force balance, from equation (2), gives:

−
dph
dr

−
GMs

r2
ρh = 0. (36)

On using (19), equation (36) leads to,

1

ρh

dρh
dr

= −
1

r2

(

GMs

a2

)

. (37a)

Rewriting equation (37a) as,
1

ρh

dρh
dr

= −
2

r2

(

GMs

2a20

)(

a20
a2

)

, (37b)

and using (21)-(23), we obtain,

1

ρh

dρh
dr

= −
2

r2
r∗0

{

1 + αM2

1 + 4α r∗0
r

}

. (38)

Using the boundary condition (15) at the surface of the sun, equation (38) yields,

ρh = ρ0e
−2r∗0

∫

r

r0

{

1+αM
2

1+4α
r
∗0
r

}

1

r2
dr
. (39)

Using (39), (28) may be rewritten as,

A(r) = A(r)

[

ρh(r)

ρ0

]

(40)

which is identical to the result(17), deduced before for the isothermal gas.
(40) implies that the correction factor needed to renormalize the actual polytropic-wind channel

area to incorporate the solar gravity geometrically is precisely the polytropic Chapman hydrostatic

density profile ρh/ρ0, as in the isothermal gas case. So, Chapman’s hydrostatic solar wind mech-
anism [4] appears to continue to be operative, on a global level (not just locally near the coronal
base), in Parker’s hydrodynamic solar wind model [6], even in the polytropic case, hence indicating
the robustness of this result.
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5 Discussion

Motivated by the strong binding of the corona by the solar gravity, Chapman [4] argued that the
corona is governed by a near hydrostatic force balance condition, and hence gave a hydrostatic
model for the static corona. Parker [6] pointed out that Chapman’s hydrostatic model [4] becomes
inaccurate away from the sun because the radial coronal flow becomes non-negligible, and gave a
hydrodynamic model for the solar wind, to supersede Chapman’s hydrostatic model [4], and reduce
to the latter near the coronal base (r ≪ r∗), as expected. However, the numerical calculations of
Lamers and Casinelli [5] showed that the density profiles given by Chapman’s hydrostatic model [4]
are almost identical to those given by Parker’s hydrodynamic model [6] (corresponding to the same
temperature) in the whole subcritical region (r . r∗). In this paper, we have therefore investigated
the global role of Chapman’s hydrostatic solar wind mechanism [4] in Parker’s hydrodynamic solar
wind model [6]. We have accomplished this by using the de Laval nozzle analogy (Clauser [14],
Parker [15]) for Parker’s hydrodynamic solar wind model [6], and have shown that the action of solar
gravity in Parker’s hydrodynamic solar wind model [6] is geometrically equivalent to renormalization
of the wind channel area, which is described precisely by Chapman’s hydrostatic density profile 2.
So, Chapman’s hydrostatic solar wind mechanism [4] appears to continue to be operative on a global

level (not just locally near the coronal base) in Parker’s hydrodynamic solar wind model [6], the
effects of solar gravity in Parker’s hydrodynamic solar wind model [6] being essentially encapsulated
by Chapman’s hydrostatic model [4]. The robustness of these results is confirmed by considering
both isothermal gas and polytropic gas models (Parker [16], Holzer [17], Shivamoggi and Pohl [18])
for the solar wind.
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2The renormalization concept is standard practice in many-body physics. One example concerns Coulomb inter-

actions in a plasma. A test charge is introduced in a plasma polarizes it and acquires a shielding cloud. It then
becomes electrically invisible outside the cloud, and behaves like a neutral particle. So, the dielectric effects of a test
charge may be transformed away via the electrostatic shielding process (Bellan [20])
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